Improving the visual quality of the given degraded observation by correcting exposure level is a fundamental task in the computer vision community. Existing works commonly lack adaptability towards unknown scenes because of the data-driven patterns (deep networks) and limited regularization (traditional optimization), and they usually need time-consuming inference. These two points heavily limit their practicability. In this paper, we establish a Practical Exposure Corrector (PEC) that assembles the characteristics of efficiency and performance. To be concrete, we rethink the exposure correction to provide a linear solution with exposure-sensitive compensation. Around generating the compensation, we introduce an exposure adversarial function as the key engine to fully extract valuable information from the observation. By applying the defined function, we construct a segmented shrinkage iterative scheme to generate the desired compensation. Its shrinkage nature supplies powerful support for algorithmic stability and robustness. Extensive experimental evaluations fully reveal the superiority of our proposed PEC. The code is available at https://rsliu.tech/PEC.
translated by 谷歌翻译
Deep learning (DL)-based tomographic SAR imaging algorithms are gradually being studied. Typically, they use an unfolding network to mimic the iterative calculation of the classical compressive sensing (CS)-based methods and process each range-azimuth unit individually. However, only one-dimensional features are effectively utilized in this way. The correlation between adjacent resolution units is ignored directly. To address that, we propose a new model-data-driven network to achieve tomoSAR imaging based on multi-dimensional features. Guided by the deep unfolding methodology, a two-dimensional deep unfolding imaging network is constructed. On the basis of it, we add two 2D processing modules, both convolutional encoder-decoder structures, to enhance multi-dimensional features of the imaging scene effectively. Meanwhile, to train the proposed multifeature-based imaging network, we construct a tomoSAR simulation dataset consisting entirely of simulation data of buildings. Experiments verify the effectiveness of the model. Compared with the conventional CS-based FISTA method and DL-based gamma-Net method, the result of our proposed method has better performance on completeness while having decent imaging accuracy.
translated by 谷歌翻译
Benefiting from a relatively larger aperture's angle, and in combination with a wide transmitting bandwidth, near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots. Meanwhile, imaging result suffers inevitable degradation from sidelobes, clutters, and noises, hindering the information retrieval of the target. To restore the image, current methods make simplified assumptions; for example, the point spread function (PSF) is spatially consistent, the target consists of sparse point scatters, etc. Thus, they achieve limited restoration performance in terms of the target's shape, especially for complex targets. To address these issues, a preliminary study is conducted on restoration with the recent promising deep learning inverse technique in this work. We reformulate the degradation model into a spatially variable complex-convolution model, where the near-field SAR's system response is considered. Adhering to it, a model-based deep learning network is designed to restore the image. A simulated degraded image dataset from multiple complex target models is constructed to validate the network. All the images are formulated using the electromagnetic simulation tool. Experiments on the dataset reveal their effectiveness. Compared with current methods, superior performance is achieved regarding the target's shape and energy estimation.
translated by 谷歌翻译
This work focuses on 3D Radar imaging inverse problems. Current methods obtain undifferentiated results that suffer task-depended information retrieval loss and thus don't meet the task's specific demands well. For example, biased scattering energy may be acceptable for screen imaging but not for scattering diagnosis. To address this issue, we propose a new task-oriented imaging framework. The imaging principle is task-oriented through an analysis phase to obtain task's demands. The imaging model is multi-cognition regularized to embed and fulfill demands. The imaging method is designed to be general-ized, where couplings between cognitions are decoupled and solved individually with approximation and variable-splitting techniques. Tasks include scattering diagnosis, person screen imaging, and parcel screening imaging are given as examples. Experiments on data from two systems indicate that the pro-posed framework outperforms the current ones in task-depended information retrieval.
translated by 谷歌翻译
细粒度识别的目的是成功区分具有微妙差异的动作类别。为了解决这个问题,我们从人类视觉系统中获得灵感,该系统包含大脑中专门用于处理特定任务的专业区域。我们设计了一个新型的动态时空专业化(DSTS)模块,该模块由专门的神经元组成,这些神经元仅针对高度相似的样品子集激活。在训练过程中,损失迫使专门的神经元学习判别性细粒差异,以区分这些相似的样品,从而改善细粒度的识别。此外,一种时空专业化方法进一步优化了专业神经元的架构,以捕获更多的空间或时间细粒信息,以更好地解决视频中各种时空变化的范围。最后,我们设计了上游下游学习算法,以优化训练过程中模型的动态决策,从而提高DSTS模块的性能。我们在两个广泛使用的细粒度识别数据集上获得了最先进的性能。
translated by 谷歌翻译
早期动作预测旨在在完全执行动作之前成功预测其类标签。这是一个具有挑战性的任务,因为不同动作的开始阶段可能非常相似,只有微妙的歧视差异。在本文中,我们提出了一个新颖的专家检索和组装(ERA)模块,该模块检索并组装了一组最专业的专家,该专家最专门使用歧视性微妙差异,以将输入样本与其他高度相似的样本区分开来。为了鼓励我们的模型有效地使用细微的差异进行早期行动预测,我们促使专家仅区分高度相似的样本,迫使这些专家学会使用这些样品之间存在的细微差异。此外,我们设计了一种有效的专家学习率优化方法,可以平衡专家的优化并带来更好的性能。我们在四个公共行动数据集上评估了我们的ERA模块,并实现最先进的性能。
translated by 谷歌翻译
本文考虑了快速MRI重建的问题。我们提出了一个基于变压器的新型框架,用于直接处理K空间中稀疏采样的信号,超出了像Convnets一样的常规网格的限制。我们采用频谱图的隐式表示,将空间坐标视为输入,并动态查询部分观察到的测量值以完成频谱图,即学习K空间中的电感偏置。为了在计算成本和重建质量之间保持平衡,我们分别建立了一个具有低分辨率和高分辨率解码器的层次结构。为了验证我们提出的模块的必要性,我们在两个公共数据集上进行了广泛的实验,并表现出优于最先进方法的卓越或可比性。
translated by 谷歌翻译
我们研究了平均奖励马尔可夫决策过程(AMDP)的问题,并开发了具有强大理论保证的新型一阶方法,以进行政策评估和优化。由于缺乏勘探,现有的彻底评估方法遭受了次优融合率以及处理不足的随机策略(例如确定性政策)的失败。为了解决这些问题,我们开发了一种新颖的差异时间差异(VRTD)方法,具有随机策略的线性函数近似以及最佳收敛保证,以及一种探索性方差降低的时间差(EVRTD)方法,用于不充分的随机策略,可相当的融合保证。我们进一步建立了政策评估偏见的线性收敛速率,这对于改善策略优化的总体样本复杂性至关重要。另一方面,与对MDP的政策梯度方法的有限样本分析相比,对AMDP的策略梯度方法的现有研究主要集中在基础马尔可夫流程的限制性假设下(例如,参见Abbasi-e, Yadkori等人,2019年),他们通常缺乏整体样本复杂性的保证。为此,我们开发了随机策略镜下降(SPMD)的平均奖励变体(LAN,2022)。我们建立了第一个$ \ widetilde {\ Mathcal {o}}(\ epsilon^{ - 2})$样品复杂性,用于在生成模型(带有UNICHAIN假设)和Markovian Noise模型(使用Ergodicicic Modele(具有核能的模型)下,使用策略梯度方法求解AMDP假设)。该界限可以进一步改进到$ \ widetilde {\ Mathcal {o}}}(\ epsilon^{ - 1})$用于求解正则化AMDPS。我们的理论优势通过数值实验来证实。
translated by 谷歌翻译
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets of CFPs in the ophthalmology community, large-scale datasets for screening only have labels of disease categories, and datasets with annotations of fundus structures are usually small in size. In addition, labeling standards are not uniform across datasets, and there is no clear information on the acquisition device. Here we release a multi-annotation, multi-quality, and multi-device color fundus image dataset for glaucoma analysis on an original challenge -- Retinal Fundus Glaucoma Challenge 2nd Edition (REFUGE2). The REFUGE2 dataset contains 2000 color fundus images with annotations of glaucoma classification, optic disc/cup segmentation, as well as fovea localization. Meanwhile, the REFUGE2 challenge sets three sub-tasks of automatic glaucoma diagnosis and fundus structure analysis and provides an online evaluation framework. Based on the characteristics of multi-device and multi-quality data, some methods with strong generalizations are provided in the challenge to make the predictions more robust. This shows that REFUGE2 brings attention to the characteristics of real-world multi-domain data, bridging the gap between scientific research and clinical application.
translated by 谷歌翻译
我们研究了线性函数近似的政策评估问题,并且目前具有强烈的最优性保证的高效实用算法。我们首先通过证明在这个问题中建立基线的下限来建立基线和随机错误。特别是,我们在与转换内核的静止分布相关联的实例相关规范中证明了Oracle复杂性下限,并使用本地渐近最低限度机械在随机误差中证明依赖于随机误差的实例相关的下限IID观察模型。现有算法未能匹配这些下限中的至少一个:为了说明,我们分析了时间差异学习的方差减少变体,特别是它未能实现Oracle复杂性下限。为了解决这个问题,我们开发了加速,方差减少的快速时间差算法(VRFTD),其同时匹配两个下限,并达到实例 - 最优性的强烈概念。最后,我们将VRFTD算法扩展到Markovian观察的设置,并提供与I.I.D中的实例相关的收敛结果。设置到与链条的混合时间成比例的乘法因子。我们的理论保证最佳的最佳保证是通过数值实验证实的。
translated by 谷歌翻译